Periodic attractors, strange attractors and hyperbolic dynamics near homoclinic orbits to saddle-focus equilibria

نویسنده

  • Ale Jan Homburg
چکیده

We discuss dynamics near homoclinic orbits to saddle-focus equilibria in threedimensional vector fields. The existence of periodic and strange attractors is investigated not in unfoldings, but in families for which each member has a homoclinic orbit. We consider how often, in the sense of measure, periodic and strange attractors occur in such families. We also discuss the fate of typical orbits, and establish that despite the possible existence of attractors, a large proportion of points from a small vicinity of the homoclinic orbit, lies outside the basin of an attractor. Mathematics Subject Classification: 34C37, 37D45

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bifurcations and Strange Attractors

We reviews the theory of strange attractors and their bifurcations. All known strange attractors may be subdivided into the following three groups: hyperbolic, pseudo-hyperbolic ones and quasi-attractors. For the first ones the description of bifurcations that lead to the appearance of Smale-Williams solenoids and Anosov-type attractors is given. The definition and the description of the attrac...

متن کامل

Periodically Forced Double Homoclinic Loops to a Dissipative Saddle

In this paper we present a comprehensive theory on the dynamics of strange attractors in periodically perturbed second order differential equations assuming that the unperturbed equations have two homoclinic loops to a dissipative saddle fixed point. We prove the existence of many complicated dynamical objects for given equations, ranging from attractive quasi-periodic torus, to Newhouse sinks ...

متن کامل

Global invariant manifolds in the transition to preturbulence in the Lorenz system

We consider the homoclinic bifurcation of the Lorenz system, where two primary periodic orbits of saddle type bifurcate from a symmetric pair of homoclinic loops. The two secondary equilibria of the Lorenz system remain the only attractors before and after this bifurcation, but a chaotic saddle is created in a tubular neighbourhood of the two homoclinic loops. This invariant hyperbolic set give...

متن کامل

A non - transverse homoclinic orbit to a saddle - node equilibrium .

Abst ract A homoclinic orbit is considered for which the center-stable and center-unstable manifolds of a saddle-node equilibrium have a quadratic tangency. This bifurcation is of codimension two and leads generically to the creation of a bifurcation curve deening two independent transverse homoclinic orbits to a saddle-node. This latter case was shown by L.P. Shilnikov to imply shift dynamics....

متن کامل

Homoclinic Loops, Heteroclinic Cycles, and Rank One Dynamics

We prove that genuine nonuniformly hyperbolic dynamics emerge when flows in RN with homoclinic loops or heteroclinic cycles are subjected to certain time-periodic forcing. In particular, we establish the emergence of strange attractors and SRB measures with strong statistical properties (central limit theorem, exponential decay of correlations, et cetera). We identify and study the mechanism re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002